Merge master into GH13936

This commit is contained in:
Christopher C. Aycock 2016-12-12 11:19:14 -05:00
commit 5eeb7d98b2
106 changed files with 4497 additions and 9088 deletions

View File

@ -16,7 +16,7 @@ env:
global:
# pandas-docs-travis GH
- secure: "PCzUFR8CHmw9lH84p4ygnojdF7Z8U5h7YfY0RyT+5K/aiQ1ZTU3ZkDTPI0/rR5FVMxsEEKEQKMcc5fvqW0PeD7Q2wRmluloKgT9w4EVEJ1ppKf7lITPcvZR2QgVOvjv4AfDtibLHFNiaSjzoqyJVjM4igjOu8WTlF3JfZcmOQjQ="
- secure: "YvvTc+FrSYHgdxqoxn9s8VOaCWjvZzlkaf6k55kkmQqCYR9dPiLMsot1F96/N7o3YlD1s0znPQCak93Du8HHi/8809zAXloTaMSZrWz4R4qn96xlZFRE88O/w/Z1t3VVYpKX3MHlCggBc8MtXrqmvWKJMAqXyysZ4TTzoiJDPvE="
git:
# for cloning

View File

@ -3,7 +3,7 @@ import pandas as pd
from pandas.util import testing as tm
class algorithm(object):
class Algorithms(object):
goal_time = 0.2
def setup(self):
@ -24,21 +24,28 @@ class algorithm(object):
self.arrneg = np.arange(-1000000, 0)
self.arrmixed = np.array([1, -1]).repeat(500000)
def time_int_factorize(self):
# match
self.uniques = tm.makeStringIndex(1000).values
self.all = self.uniques.repeat(10)
def time_factorize_int(self):
self.int.factorize()
def time_float_factorize(self):
def time_factorize_float(self):
self.int.factorize()
def time_int_unique_duplicated(self):
def time_duplicated_int_unique(self):
self.int_unique.duplicated()
def time_int_duplicated(self):
def time_duplicated_int(self):
self.int.duplicated()
def time_float_duplicated(self):
def time_duplicated_float(self):
self.float.duplicated()
def time_match_strings(self):
pd.match(self.all, self.uniques)
def time_add_overflow_pos_scalar(self):
self.checked_add(self.arr, 1)
@ -58,7 +65,7 @@ class algorithm(object):
self.checked_add(self.arr, self.arrmixed)
class hashing(object):
class Hashing(object):
goal_time = 0.2
def setup(self):

View File

@ -1,23 +1,32 @@
from .pandas_vb_common import *
from pandas.util.decorators import cache_readonly
class getattr_dataframe_index(object):
class DataFrameAttributes(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10, 6))
self.cur_index = self.df.index
def time_getattr_dataframe_index(self):
def time_get_index(self):
self.foo = self.df.index
def time_set_index(self):
self.df.index = self.cur_index
class setattr_dataframe_index(object):
class CacheReadonly(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(10, 6))
self.cur_index = self.df.index
def time_setattr_dataframe_index(self):
self.df.index = self.cur_index
class Foo:
@cache_readonly
def prop(self):
return 5
self.obj = Foo()
def time_cache_readonly(self):
self.obj.prop

View File

@ -2,193 +2,79 @@ from .pandas_vb_common import *
import pandas.computation.expressions as expr
class frame_add(object):
class Ops(object):
goal_time = 0.2
def setup(self):
params = [[True, False], ['default', 1]]
param_names = ['use_numexpr', 'threads']
def setup(self, use_numexpr, threads):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
def time_frame_add(self):
if threads != 'default':
expr.set_numexpr_threads(threads)
if not use_numexpr:
expr.set_use_numexpr(False)
def time_frame_add(self, use_numexpr, threads):
(self.df + self.df2)
def time_frame_mult(self, use_numexpr, threads):
(self.df * self.df2)
class frame_add_no_ne(object):
goal_time = 0.2
def time_frame_multi_and(self, use_numexpr, threads):
self.df[((self.df > 0) & (self.df2 > 0))]
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
expr.set_use_numexpr(False)
def time_frame_comparison(self, use_numexpr, threads):
(self.df > self.df2)
def time_frame_add_no_ne(self):
(self.df + self.df2)
def teardown(self):
def teardown(self, use_numexpr, threads):
expr.set_use_numexpr(True)
class frame_add_st(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
expr.set_numexpr_threads(1)
def time_frame_add_st(self):
(self.df + self.df2)
def teardown(self):
expr.set_numexpr_threads()
class frame_float_div(object):
class Ops2(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
self.df2 = DataFrame(np.random.randn(1000, 1000))
self.df_int = DataFrame(
np.random.random_integers(np.iinfo(np.int16).min,
np.iinfo(np.int16).max,
size=(1000, 1000)))
self.df2_int = DataFrame(
np.random.random_integers(np.iinfo(np.int16).min,
np.iinfo(np.int16).max,
size=(1000, 1000)))
## Division
def time_frame_float_div(self):
(self.df // self.df2)
class frame_float_div_by_zero(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
def time_frame_float_div_by_zero(self):
(self.df / 0)
class frame_float_floor_by_zero(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
def time_frame_float_floor_by_zero(self):
(self.df // 0)
def time_frame_int_div_by_zero(self):
(self.df_int / 0)
class frame_float_mod(object):
goal_time = 0.2
## Modulo
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
self.df2 = DataFrame(np.random.randn(1000, 1000))
def time_frame_int_mod(self):
(self.df / self.df2)
def time_frame_float_mod(self):
(self.df / self.df2)
class frame_int_div_by_zero(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.random_integers(np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(1000, 1000)))
def time_frame_int_div_by_zero(self):
(self.df / 0)
class frame_int_mod(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.random_integers(np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(1000, 1000)))
self.df2 = DataFrame(np.random.random_integers(np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(1000, 1000)))
def time_frame_int_mod(self):
(self.df / self.df2)
class frame_mult(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
def time_frame_mult(self):
(self.df * self.df2)
class frame_mult_no_ne(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
expr.set_use_numexpr(False)
def time_frame_mult_no_ne(self):
(self.df * self.df2)
def teardown(self):
expr.set_use_numexpr(True)
class frame_mult_st(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
expr.set_numexpr_threads(1)
def time_frame_mult_st(self):
(self.df * self.df2)
def teardown(self):
expr.set_numexpr_threads()
class frame_multi_and(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
def time_frame_multi_and(self):
self.df[((self.df > 0) & (self.df2 > 0))]
class frame_multi_and_no_ne(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
expr.set_use_numexpr(False)
def time_frame_multi_and_no_ne(self):
self.df[((self.df > 0) & (self.df2 > 0))]
def teardown(self):
expr.set_use_numexpr(True)
class frame_multi_and_st(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
expr.set_numexpr_threads(1)
def time_frame_multi_and_st(self):
self.df[((self.df > 0) & (self.df2 > 0))]
def teardown(self):
expr.set_numexpr_threads()
class series_timestamp_compare(object):
class Timeseries(object):
goal_time = 0.2
def setup(self):
@ -197,65 +83,28 @@ class series_timestamp_compare(object):
self.s = Series(date_range('20010101', periods=self.N, freq='T'))
self.ts = self.s[self.halfway]
self.s2 = Series(date_range('20010101', periods=self.N, freq='s'))
def time_series_timestamp_compare(self):
(self.s <= self.ts)
class timestamp_ops_diff1(object):
goal_time = 0.2
N = 1000000
def setup(self):
self.s = self.create()
def create(self):
return Series(date_range('20010101', periods=self.N, freq='s'))
def time_timestamp_ops_diff1(self):
self.s.diff()
class timestamp_tz_ops_diff1(timestamp_ops_diff1):
N = 10000
def create(self):
return Series(date_range('20010101', periods=self.N, freq='s', tz='US/Eastern'))
class timestamp_ops_diff2(object):
goal_time = 0.2
N = 1000000
def setup(self):
self.s = self.create()
def create(self):
return Series(date_range('20010101', periods=self.N, freq='s'))
def time_timestamp_ops_diff2(self):
(self.s - self.s.shift())
class timestamp_tz_ops_diff2(timestamp_ops_diff2):
N = 10000
def create(self):
return Series(date_range('20010101', periods=self.N, freq='s', tz='US/Eastern'))
class timestamp_series_compare(object):
goal_time = 0.2
N = 1000000
def setup(self):
self.halfway = ((self.N // 2) - 1)
self.s = self.create()
self.ts = self.s[self.halfway]
def create(self):
return Series(date_range('20010101', periods=self.N, freq='T'))
def time_timestamp_series_compare(self):
(self.ts >= self.s)
class timestamp_tz_series_compare(timestamp_series_compare):
N = 10000
def time_timestamp_ops_diff1(self):
self.s2.diff()
def create(self):
return Series(date_range('20010101', periods=self.N, freq='T', tz='US/Eastern'))
def time_timestamp_ops_diff2(self):
(self.s - self.s.shift())
class TimeseriesTZ(Timeseries):
def setup(self):
self.N = 1000000
self.halfway = ((self.N // 2) - 1)
self.s = Series(date_range('20010101', periods=self.N, freq='T', tz='US/Eastern'))
self.ts = self.s[self.halfway]
self.s2 = Series(date_range('20010101', periods=self.N, freq='s', tz='US/Eastern'))

View File

@ -3,32 +3,49 @@ try:
from pandas.types.concat import union_categoricals
except ImportError:
pass
import string
class concat_categorical(object):
class Categoricals(object):
goal_time = 0.2
def setup(self):
self.s = pd.Series((list('aabbcd') * 1000000)).astype('category')
N = 100000
self.s = pd.Series((list('aabbcd') * N)).astype('category')
def time_concat_categorical(self):
self.a = pd.Categorical((list('aabbcd') * N))
self.b = pd.Categorical((list('bbcdjk') * N))
self.categories = list('abcde')
self.cat_idx = Index(self.categories)
self.values = np.tile(self.categories, N)
self.codes = np.tile(range(len(self.categories)), N)
self.datetimes = pd.Series(pd.date_range(
'1995-01-01 00:00:00', periods=10000, freq='s'))
def time_concat(self):
concat([self.s, self.s])
class union_categorical(object):
goal_time = 0.2
def setup(self):
self.a = pd.Categorical((list('aabbcd') * 1000000))
self.b = pd.Categorical((list('bbcdjk') * 1000000))
def time_union_categorical(self):
def time_union(self):
union_categoricals([self.a, self.b])
def time_constructor_regular(self):
Categorical(self.values, self.categories)
class categorical_value_counts(object):
goal_time = 1
def time_constructor_fastpath(self):
Categorical(self.codes, self.cat_idx, fastpath=True)
def time_constructor_datetimes(self):
Categorical(self.datetimes)
def time_constructor_datetimes_with_nat(self):
t = self.datetimes
t.iloc[-1] = pd.NaT
Categorical(t)
class Categoricals2(object):
goal_time = 0.2
def setup(self):
n = 500000
@ -36,56 +53,13 @@ class categorical_value_counts(object):
arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)]
self.ts = Series(arr).astype('category')
self.sel = self.ts.loc[[0]]
def time_value_counts(self):
self.ts.value_counts(dropna=False)
def time_value_counts_dropna(self):
self.ts.value_counts(dropna=True)
class categorical_constructor(object):
goal_time = 0.2
def setup(self):
n = 5
N = 1e6
self.categories = list(string.ascii_letters[:n])
self.cat_idx = Index(self.categories)
self.values = np.tile(self.categories, N)
self.codes = np.tile(range(n), N)
def time_regular_constructor(self):
Categorical(self.values, self.categories)
def time_fastpath(self):
Categorical(self.codes, self.cat_idx, fastpath=True)
class categorical_constructor_with_datetimes(object):
goal_time = 0.2
def setup(self):
self.datetimes = pd.Series(pd.date_range(
'1995-01-01 00:00:00', periods=10000, freq='s'))
def time_datetimes(self):
Categorical(self.datetimes)
def time_datetimes_with_nat(self):
t = self.datetimes
t.iloc[-1] = pd.NaT
Categorical(t)
class categorical_rendering(object):
goal_time = 3e-3
def setup(self):
n = 1000
items = [str(i) for i in range(n)]
s = pd.Series(items, dtype='category')
df = pd.DataFrame({'C': s, 'data': np.random.randn(n)})
self.data = df[df.C == '20']
def time_rendering(self):
str(self.data.C)
str(self.sel)

View File

@ -1,52 +1,30 @@
from .pandas_vb_common import *
class frame_constructor_ndarray(object):
class Constructors(object):
goal_time = 0.2
def setup(self):
self.arr = np.random.randn(100, 100)
self.arr_str = np.array(['foo', 'bar', 'baz'], dtype=object)
def time_frame_constructor_ndarray(self):
DataFrame(self.arr)
class ctor_index_array_string(object):
goal_time = 0.2
def setup(self):
self.data = np.array(['foo', 'bar', 'baz'], dtype=object)
def time_ctor_index_array_string(self):
Index(self.data)
class series_constructor_ndarray(object):
goal_time = 0.2
def setup(self):
self.data = np.random.randn(100)
self.index = Index(np.arange(100))
def time_series_constructor_ndarray(self):
Series(self.data, index=self.index)
self.s = Series(([Timestamp('20110101'), Timestamp('20120101'),
Timestamp('20130101')] * 1000))
def time_frame_from_ndarray(self):
DataFrame(self.arr)
class dtindex_from_series_ctor(object):
goal_time = 0.2
def time_series_from_ndarray(self):
pd.Series(self.data, index=self.index)
def setup(self):
self.s = Series(([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')] * 1000))
def time_index_from_array_string(self):
Index(self.arr_str)
def time_dtindex_from_series_ctor(self):
def time_dtindex_from_series(self):
DatetimeIndex(self.s)
class index_from_series_ctor(object):
goal_time = 0.2
def setup(self):
self.s = Series(([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')] * 1000))
def time_index_from_series_ctor(self):
def time_dtindex_from_series2(self):
Index(self.s)

View File

@ -3,7 +3,7 @@ import pandas as pd
import pandas.computation.expressions as expr
class eval_frame(object):
class Eval(object):
goal_time = 0.2
params = [['numexpr', 'python'], [1, 'all']]
@ -34,8 +34,11 @@ class eval_frame(object):
df, df2, df3, df4 = self.df, self.df2, self.df3, self.df4
pd.eval('df * df2 * df3 * df4', engine=engine)
def teardown(self, engine, threads):
expr.set_numexpr_threads()
class query_datetime_index(object):
class Query(object):
goal_time = 0.2
def setup(self):
@ -45,41 +48,19 @@ class query_datetime_index(object):
self.s = Series(self.index)
self.ts = self.s.iloc[self.halfway]
self.df = DataFrame({'a': np.random.randn(self.N), }, index=self.index)
self.df2 = DataFrame({'dates': self.s.values,})
self.df3 = DataFrame({'a': np.random.randn(self.N),})
self.min_val = self.df3['a'].min()
self.max_val = self.df3['a'].max()
def time_query_datetime_index(self):
ts = self.ts
self.df.query('index < @ts')
class query_datetime_series(object):
goal_time = 0.2
def setup(self):
self.N = 1000000
self.halfway = ((self.N // 2) - 1)
self.index = date_range('20010101', periods=self.N, freq='T')
self.s = Series(self.index)
self.ts = self.s.iloc[self.halfway]
self.df = DataFrame({'dates': self.s.values, })
def time_query_datetime_series(self):
ts = self.ts
self.df.query('dates < @ts')
class query_with_boolean_selection(object):
goal_time = 0.2
def setup(self):
self.N = 1000000
self.halfway = ((self.N // 2) - 1)
self.index = date_range('20010101', periods=self.N, freq='T')
self.s = Series(self.index)
self.ts = self.s.iloc[self.halfway]
self.N = 1000000
self.df = DataFrame({'a': np.random.randn(self.N), })
self.min_val = self.df['a'].min()
self.max_val = self.df['a'].max()
self.df2.query('dates < @ts')
def time_query_with_boolean_selection(self):
min_val, max_val = self.min_val, self.max_val

View File

@ -5,1617 +5,10 @@ except:
from pandas.core.datetools import *
class frame_ctor_dtindex_BDayx1(object):
goal_time = 0.2
#----------------------------------------------------------------------
# Creation from nested dict
def setup(self):
self.idx = self.get_index_for_offset(BDay(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BDayx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BDayx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BDay(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BDayx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BMonthBeginx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BMonthBegin(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BMonthBeginx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BMonthBeginx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BMonthBegin(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BMonthBeginx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BMonthEndx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BMonthEnd(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BMonthEndx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BMonthEndx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BMonthEnd(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BMonthEndx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BQuarterBeginx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BQuarterBegin(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BQuarterBeginx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BQuarterBeginx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BQuarterBegin(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BQuarterBeginx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BQuarterEndx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BQuarterEnd(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BQuarterEndx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BQuarterEndx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BQuarterEnd(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BQuarterEndx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BYearBeginx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BYearBegin(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BYearBeginx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BYearBeginx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BYearBegin(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BYearBeginx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BYearEndx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BYearEnd(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BYearEndx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BYearEndx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BYearEnd(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BYearEndx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BusinessDayx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BusinessDay(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BusinessDayx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BusinessDayx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BusinessDay(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BusinessDayx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BusinessHourx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BusinessHour(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BusinessHourx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_BusinessHourx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(BusinessHour(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_BusinessHourx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CBMonthBeginx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CBMonthBegin(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CBMonthBeginx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CBMonthBeginx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CBMonthBegin(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CBMonthBeginx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CBMonthEndx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CBMonthEnd(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CBMonthEndx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CBMonthEndx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CBMonthEnd(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CBMonthEndx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CDayx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CDay(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CDayx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CDayx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CDay(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CDayx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CustomBusinessDayx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CustomBusinessDay(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CustomBusinessDayx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_CustomBusinessDayx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(CustomBusinessDay(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_CustomBusinessDayx2(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_DateOffsetx1(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(DateOffset(1, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_DateOffsetx1(self):
DataFrame(self.d)
def get_period_count(self, start_date, off):
self.ten_offsets_in_days = ((start_date + (off * 10)) - start_date).days
if (self.ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // self.ten_offsets_in_days)), 1000)
def get_index_for_offset(self, off):
self.start_date = Timestamp('1/1/1900')
return date_range(self.start_date, periods=min(1000, self.get_period_count(self.start_date, off)), freq=off)
class frame_ctor_dtindex_DateOffsetx2(object):
goal_time = 0.2
def setup(self):
self.idx = self.get_index_for_offset(DateOffset(2, **{}))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict([(col, self.df[col]) for col in self.df.columns])
def time_frame_ctor_dtindex_DateOffsetx2(self):
DataFrame(self.d)